Challenges and Lessons Learned: Building VDOT's Enterprise GIS Using State of the Art Technology

Presented by:

Melanie R. Seigler, VDOT

Naveed Sami, VDOT

Bobby Harris, GIS/Trans, Ltd.

Presentation Overview

- Overview of Project Goals
- Enterprise Data Considerations
- Enterprise Architecture

Background

- Vision established in 1997-1998 for an enterprise approach to support future spatially enabled apps
- No vendor's COTS product was able to meet all requirements without major customization
- Project scope changed no longer custom, but Commercial Off The Shelf (COTS)
- After evaluation ESRI's ArcSDE / ArcIMS / Oracle solution selected
- VDOT staffed their GIS Program to oversee development, testing and production

 GIS Trans, Ltd.

WHIT We feen Visibis Marine

System Objectives

- Link business data to spatial data (LRS key)
- Serve traditional information to VDOT users in graphic format
- Provide a single point of access for enterprise spatial data for fat and thin clients
- Standardize spatial parameters to simplify the integration of various spatial data sets

System Objectives (Continued)

- Map server for query and display of maps through VDOT's intranet browsers
- Callable interface (API) accessible by popular programming languages and GIS scripts
- Integration of VDOT's multiple Linear Referencing Systems on common reference frame
- Integrated help to promote user friendliness

Objectives to be Phased-In as Industry Matures

- On-the-fly location referencing system conversions for disparate data including local data
- Information locator with strong metadata content
- So Custom thin client interfaces
- Linkage to real time information such as ITS data

Who will the GIS Integrator Serve?

- Internal VDOT users
 - Used as a GIS data repository
 - Used as a model to build similar web-based projects in other VDOT business units
- Eventually Internet
 - Customer information system
 - Interagency data sharing

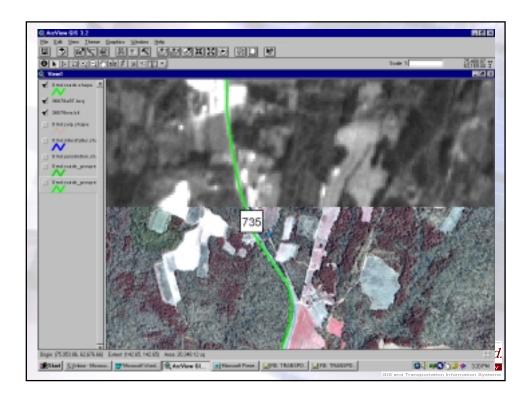
Enterprise Data Considerations Melanie Seigler GIS Applications Manager GIS Trans, Ltd. A Ed Systems New Company The Ring Viginia Meeting

Critical Data Issues

- Availability what do we have to work with
- Quality legacy systems, no standards, locational information
- Preprocessing formats, projections
- Volume 60,000 miles of road over a large area, 1.2 TB of aerial photography

Data Layers

- Roads (All, Grouped, Measured shapes, ICAS Centerlines, Six-Year Improvement Program)
- Imagery DOQQ & Right-of-Way
- Jurisdictional boundaries and water bodies
- Business Data: (Traffic, Accidents, Data Warehouse linkage to certain layers)



Imagery

- ROW Imagery
 - Obtained through Maintenance centerline data collection effort
 - forward images every 10th of a mile (52 ft)
- USGS Digital Ortho Quarter Quad
 - 1994-2000, color IR and/or black and white, 1m, 1:12000
 - 1.2 TB of images

Business Data

- Hosted as Materialized Views
- Spatially indexed
- Some data cleansing LRS

Near Term Data Plans

- Data:
 - County Map Centerlines to ICAS Centerlines
 - Replace current LRS with ICAS LRS
 - Updated Imagery when available
 - More linkages to business data
 - Environmental Data (NWI, soils, T&E)

Enterprise Architecture Considerations

Naveed Sami
Director of Technology
Maintenance Division

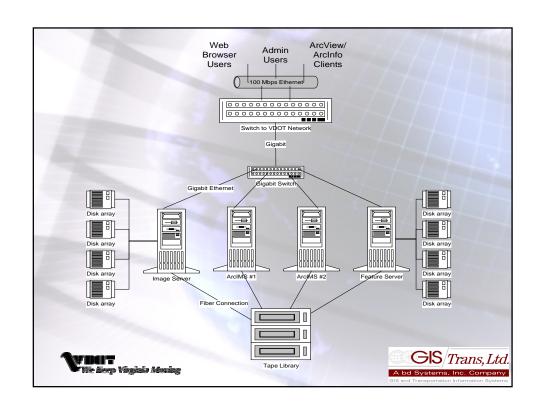
Critical Design Issues

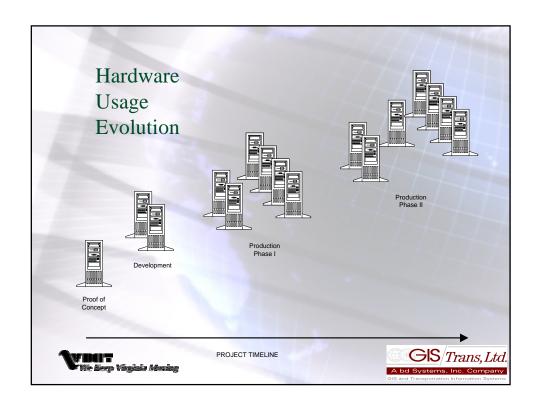
- **Business Needs**
 - 200 Concurrent Users over a Wide Area Network
 - 2 TB of Imagery
- Resulting System Needs
 - Large number of hard drives on data servers
 - Massive Data Backup
 - High bandwidth required between all servers
 - Significant Performance Tuning

Solutions

- Separate Business/Vector from Image data
- Configure for large Parallel I/O
- Group Vectors based on query needs
- Physically store feature tables in Spatial Index order
- Scale dependant rendering
- Thorough testing with custom designed Stress Testing Utilities

Two Data Servers


- Vector/Business
- Image
- Hardware
 - Quad CPU
 - 4GB RAM
 - 60 18GB hard drives
- Software
 - SDE
 - Oracle
 - Windows NT


VIDOT Viče Essp Vinginio Mening

Two Application Servers

- **Hardware**
 - Quad CPU
 - 4 GB RAM
 - 2 18 GB hard drives
- Software
 - ArcIMS
 - IIS
 - Windows NT

Future Plans

- Incorporate new COTS functionality as available
- ► Performance Tuning (on-going)
- Just-In-Time Hardware Acquisition
- Support application needs of VDOT business units
- Provide common architecture that other business units can build their GIS on.

Contacts

- VDOT Data Management Division
 - Dan Widner ... 804-786-6762
 - Melanie R. Seigler ... 804-786-4966
- **VDOT Maintenance Division**
 - Naveed Sami ... 804-786-0765
- S GIS/Trans, Ltd
 - Bobby Harris ... 301-495-0217, ext 126

